Search notes:

Python library: pandas

pandas is a dataframe library for Python (which is why its main class is DataFrame).
Internally, pandas uses the functionality of numpy to a large extent. Some parts are also written in Cython.

Module members

Read functions

Panda's read_…() functions read data of various formats and create a DataFrame.
read_clipboard()
read_csv()
read_excel() Reads an Excel worksheet from an Excel workbook. See also pandas' ExcelFile and ExcelWriter objects
read_feather() See also the feather-library package.
read_fwf() Fixed-width formatted lines
read_gbq() Google Big Query. Requires the pandas_gbq package.
read_hdf() Hierarchical Data Format (HDF). See also the HDFStore object.
read_html()
read_json()
read_orc() Optimized Row Columnar (ORC) files. See also pyarrow.orc.
read_parquet() Apache Parquet.
read_pickle() Reads «pickled» data (see the pickle module)
read_sas() SAS formats XPORT and SAS7BDAT.
read_spss() Statistical Package for Social Sciences
read_sql() A convenience wrapper around read_sql_table() and read_sql_query().
read_sql_query()
read_sql_table() Returns the content of a table from an SQLAlchemy connectable as a data frame - does not support DBAPI connections.
read_stata()
read_table()
read_xml()
Some of these methods have a corresponding to_…() method in DataFrame such as to_excel() or to_clipboard etc.

Other members

annotations
api a module
array()
arrays a module
ArrowDtype
bdate_range()
BooleanDtype
Categorical
CategoricalDtype
CategoricalIndex
compat a module
concat()
_config a module
core a module
crosstab()
cut()
DataFrame A two dimensional data structure. Compare with the one dimensional Series object.
DateOffset
date_range() Returns a DatetimeIndex object that represents equally spaced points in time (for example pd.date_range('2022-01-01', periods=365) or pd.date_range('2022-08-28', periods=24, freq='H')). Compare with bdate_range.
DatetimeIndex
DatetimeTZDtype
describe_option
errors a module
eval()
ExcelFile
ExcelWriter
factorize()
Flags
Float32Dtype
Float64Dtype
Float64Index deprecated in favor of pandas.Index
from_dummies()
get_dummies()
get_option
Grouper
HDFStore
Index
IndexSlice
infer_freq()
Int16Dtype
Int32Dtype
Int64Dtype
Int64Index deprecated in favor of pandas.Index.
Int8Dtype
Interval
IntervalDtype
IntervalIndex
interval_range()
io a a module
isna()
isnull()
_is_numpy_dev
json_normalize()
_libs a module
lreshape()
melt()
merge()
merge_asof()
merge_ordered()
MultiIndex
NA
NamedAgg
NaT
notna()
notnull()
offsets a module
option_context
options
pandas a module
Period
PeriodDtype
PeriodIndex
period_range()
pivot()
pivot_table()
plotting a module
qcut()
RangeIndex
reset_option
Series A one dimensional labeled array whose elements can be any data type. Compare with the two dimensional DataFrame.
set_eng_float_format()
set_option
show_versions()
SparseDtype
StringDtype
test()
_testing a module
testing a a module
Timedelta
TimedeltaIndex
timedelta_range()
Timestamp
to_datetime()
to_numeric()
to_pickle()
to_timedelta()
tseries a module
_typing a module
UInt16Dtype
UInt32Dtype
UInt64Dtype
UInt64Index deprecated in favor of pandas.Index
UInt8Dtype
unique()
util a module
value_counts()
_version a module
wide_to_long()

qcut

import pandas

q =  pandas.qcut ( [ 1, 2, 2, 4, 5, 9, 10, 12, 15, 16, 16, 18, 20, 23 ], 4)

print(type(q))
# <class 'pandas.core.arrays.categorical.Categorical'>

print(q)
#
# Length: 14
# Categories (4, interval[float64, right]): [(0.999, 4.25] < (4.25, 11.0] < (11.0, 16.0] <
#                                           (16.0, 23.0]]
Github repository about-python, path: /libraries/pandas/qcut.py

Series

import pandas

a = pandas.Series( [  42 , -11 ,  19 ])
b = pandas.Series( ['foo','bar','baz'])

print(type (a)) # <class 'pandas.core.series.Series'>

print(a)
# 0    42
# 1   -11
# 2    19

print(b)
# 0    foo
# 1    bar
# 2    baz
Github repository about-python, path: /libraries/pandas/Series/Series.py

See also

A DataFrame is a 2 dimensional data structure.
The most dataframe library for Python is Pandas. Other dataframe libraries include
Ibis Runs on SQLAlchemy and has an SQL compiler to translate its pandas-like API to SQL statements.
PySpark Uses Spark as backend
cuDF A GPU dataframe library built on top of Apache Arrow and RAPIDS.
Vaex Uses hdf5
Koalas Is built on top of PySpark
Dask
Modin
Turi Create
Libraries that consume dataframes include

Index