pandas
uses the functionality of numpy
to a large extent. Some parts are also written in Cython. read_clipboard() | |
read_csv() | |
read_excel() | Reads an Excel worksheet from an Excel workbook. See also pandas' ExcelFile and ExcelWriter objects |
read_feather() | See also the feather-library package. |
read_fwf() | Fixed-width formatted lines |
read_gbq() | Google Big Query. Requires the pandas_gbq package. |
read_hdf() | Hierarchical Data Format (HDF). See also the HDFStore object. |
read_html() | |
read_json() | |
read_orc() | Optimized Row Columnar (ORC) files. See also pyarrow.orc . |
read_parquet() | Apache Parquet. |
read_pickle() | Reads «pickled» data (see the pickle module) |
read_sas() | SAS formats XPORT and SAS7BDAT. |
read_spss() | Statistical Package for Social Sciences |
read_sql() | A convenience wrapper around read_sql_table() and read_sql_query() . |
read_sql_query() | |
read_sql_table() | Returns the content of a table from an SQLAlchemy connectable as a data frame - does not support DBAPI connections. |
read_stata() | |
read_table() | |
read_xml() |
to_…()
method in DataFrame such as to_excel()
or to_clipboard
etc. annotations | |
api | a module |
array() | |
arrays | a module |
ArrowDtype | |
bdate_range() | |
BooleanDtype | |
Categorical | |
CategoricalDtype | |
CategoricalIndex | |
compat | a module |
concat() | |
_config | a module |
core | a module |
crosstab() | |
cut() | |
DataFrame | A two dimensional data structure. Compare with the one dimensional Series object. |
DateOffset | |
date_range() | Returns a DatetimeIndex object that represents equally spaced points in time (for example pd.date_range('2022-01-01', periods=365) or pd.date_range('2022-08-28', periods=24, freq='H') ). Compare with bdate_range . |
DatetimeIndex | |
DatetimeTZDtype | |
describe_option | |
errors | a module |
eval() | |
ExcelFile | |
ExcelWriter | |
factorize() | |
Flags | |
Float32Dtype | |
Float64Dtype | |
Float64Index | deprecated in favor of pandas.Index |
from_dummies() | |
get_dummies() | |
get_option | |
Grouper | |
HDFStore | |
Index | |
IndexSlice | |
infer_freq() | |
Int16Dtype | |
Int32Dtype | |
Int64Dtype | |
Int64Index | deprecated in favor of pandas.Index . |
Int8Dtype | |
Interval | |
IntervalDtype | |
IntervalIndex | |
interval_range() | |
io | a a module |
isna() | |
isnull() | |
_is_numpy_dev | |
json_normalize() | |
_libs | a module |
lreshape() | |
melt() | |
merge() | |
merge_asof() | |
merge_ordered() | |
MultiIndex | |
NA | |
NamedAgg | |
NaT | |
notna() | |
notnull() | |
offsets | a module |
option_context | |
options | |
pandas | a module |
Period | |
PeriodDtype | |
PeriodIndex | |
period_range() | |
pivot() | |
pivot_table() | |
plotting | a module |
qcut() | |
RangeIndex | |
reset_option | |
Series | A one dimensional labeled array whose elements can be any data type. Compare with the two dimensional DataFrame . |
set_eng_float_format() | |
set_option | |
show_versions() | |
SparseDtype | |
StringDtype | |
test() | |
_testing | a module |
testing | a a module |
Timedelta | |
TimedeltaIndex | |
timedelta_range() | |
Timestamp | |
to_datetime() | |
to_numeric() | |
to_pickle() | |
to_timedelta() | |
tseries | a module |
_typing | a module |
UInt16Dtype | |
UInt32Dtype | |
UInt64Dtype | |
UInt64Index | deprecated in favor of pandas.Index |
UInt8Dtype | |
unique() | |
util | a module |
value_counts() | |
_version | a module |
wide_to_long() |
import pandas q = pandas.qcut ( [ 1, 2, 2, 4, 5, 9, 10, 12, 15, 16, 16, 18, 20, 23 ], 4) print(type(q)) # <class 'pandas.core.arrays.categorical.Categorical'> print(q) # # Length: 14 # Categories (4, interval[float64, right]): [(0.999, 4.25] < (4.25, 11.0] < (11.0, 16.0] < # (16.0, 23.0]]
import pandas a = pandas.Series( [ 42 , -11 , 19 ]) b = pandas.Series( ['foo','bar','baz']) print(type (a)) # <class 'pandas.core.series.Series'> print(a) # 0 42 # 1 -11 # 2 19 print(b) # 0 foo # 1 bar # 2 baz
Ibis | Runs on SQLAlchemy and has an SQL compiler to translate its pandas-like API to SQL statements. |
PySpark | Uses Spark as backend |
cuDF | A GPU dataframe library built on top of Apache Arrow and RAPIDS. |
Vaex | Uses hdf5 |
Koalas | Is built on top of PySpark |
Dask | |
Modin | |
Turi Create |